Stream-based active learning for sentiment analysis in the financial domain

نویسندگان

  • Jasmina Smailovic
  • Miha Grcar
  • Nada Lavrac
  • Martin Znidarsic
چکیده

Studying the relationship between public sentiment and stock prices has been the focus of several studies. This paper analyzes whether the sentiment expressed in Twitter feeds, which discuss selected companies and their products, can indicate their stock price changes. To address this problem, an active learning approach was developed and applied to sentiment analysis of tweet streams in the stock market domain. The paper first presents a static Twitter data analysis problem, explored in order to determine the best Twitter-specific text preprocessing setting for training the Support Vector Machine (SVM) sentiment classifier. In the static setting, the Granger causality test shows that sentiments in stockrelated tweets can be used as indicators of stock price movements a few days in advance, where improved results were achieved by adapting the SVM classifier to categorize Twitter posts into three sentiment categories of positive, negative and neutral (instead of positive and negative only). These findings were adopted in the development of a new streambased active learning approach to sentiment analysis, applicable in incremental learning from continuously changing financial tweet streams. To this end, a series of experiments was conducted to determine the best querying strategy for active learning of the SVM classifier adapted to sentiment analysis of financial tweet streams. The experiments in analyzing stock market sentiments of a particular company show that changes in positive sentiment probability can be used as indicators of the changes in stock closing prices. 2014 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis

Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...

متن کامل

Efficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text

People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...

متن کامل

A Supervised Method for Constructing Sentiment Lexicon in Persian Language

Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...

متن کامل

On Enhancing the Label Propagation Algorithm for Sentiment Analysis Using Active Learning with an Artificial Oracle

A core component of Sentiment Analysis is the generation of sentiment lists. Label propagation is equivocally one of the most used approaches for generating sentiment lists based on annotated seed words in a manual manner. Words which are situated many hops away from the seed words tend to get low sentiment values. Such inherent property of the Label Propagation algorithm poses a controversial ...

متن کامل

Active learning for sentiment analysis on data streams: Methodology and workflow implementation in the ClowdFlows platform

Sentiment analysis from data streams is aimed at detecting authors ' attitude , emotions and opinions from texts in real-time. To reduce the labeling effort needed in the data collection phase , active learning is often applied in streaming scenarios , where a learning algorithm is allowed to select new examples to be manually labeled in order to improve the learner ' s performance. Even though...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 285  شماره 

صفحات  -

تاریخ انتشار 2014